If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+73x+21=0
a = 10; b = 73; c = +21;
Δ = b2-4ac
Δ = 732-4·10·21
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-67}{2*10}=\frac{-140}{20} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+67}{2*10}=\frac{-6}{20} =-3/10 $
| 10+19h-6=20h-8 | | −3x+4=−10 | | v-175=540 | | 4(x=3)=6 | | 3x-38=2x+15 | | {x20340}{34100}=9 | | (9x-20)(5x+16)=0 | | -55-6x=25-11x | | 7+2x=2(-x+9)-23 | | 32=1/2x2x | | 18.71+3.6g-16.05=6.42+4g | | -3=7(x-9/7) | | w=37-30 | | y-2/5=-1/3+y | | x/2+1/2=3 | | -6(x+2)-17=15+4 | | 8s+15=-11+6s | | -2w=-8.6 | | (x+3)⋅3+2=4x+2 | | 19.00+4.50h=9.00+5.75h | | 6h−1=3 | | -5x-3x=-104 | | 15p-14=16p | | n-19=-6.3 | | 16x+15=431 | | (3/4)(x+8)=9 | | 3=5-4x | | n-19=-6.4 | | 0.5x+0.5x=x1 | | y-8=7*6 | | 3/4=6x+1 | | 21d=651 |